Method of surface energy investigation by lateral AFM: application to control growth mechanism of nanostructured NiFe films

  • 1.

    Anento, N., Serra, A. & Osetsky, Y. Effect of Nickel on point defects diffusion in Fe–Ni alloys. Acta Mater. 123, 367–373 (2017).


    Google Scholar
     

  • 2.

    Sun, H., Lin, L., Huang, Y. & Hong, W. Nickel precursor-free synthesis of nickel cobalt-based ternary metal oxides for asymmetric supercapacitors. Electrochim. Acta 281, 692–699 (2018).

    CAS 

    Google Scholar
     

  • 3.

    Jin, K. et al. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni–Fe solid solution alloys. Acta Mater. 121, 365–373 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Sharma, A., Kumar, A., Gazit, N., Srolovitz, D. J. & Rabkin, E. Grain growth and solid-state dewetting of Bi-crystal Ni–Fe thin filmson sapphire. Acta Mater. 168, 237–249 (2019).

    CAS 

    Google Scholar
     

  • 5.

    Kondalkar, V. V., Li, X., Yang, S. & Leea, K. Current sensor based on nanocrystalline NiFe/Cu/NiFe thin film. Procedia Eng. 168, 675–679 (2016).


    Google Scholar
     

  • 6.

    Jiraskova, Y. et al. Phase and magnetic studies of the high-energy alloyed Ni–Fe. J. Alloys Compd. 594, 133–140 (2014).

    CAS 

    Google Scholar
     

  • 7.

    Cesiulis, H. & Stojek, Z. Electrodeposition and properties of Ni W, Fe W and Fe Ni W amorphous alloys. A comparative study. Electrochim. Acta 45, 3389–3396 (2006).


    Google Scholar
     

  • 8.

    Grabchikov, S. S. et al. Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater. 398, 49–53 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Trukhanov, A. V. et al. AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Lee, W. Y., Toney, M. F., Mauri, D., Tameerug, P. & Allen, E. Ni–Fe alloy thin films for AMR sensors. IEEE Trans. Magn. 36, 381–387 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Hika, K., Panina, L. V. & Mohri, K. Magneto-impedance in sandwich film for magnetic sensor heads. IEEE Trans. Magn. 32, 4594–4596 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Kumar, D., Barman, S. & Barman, A. Magnetic vortex based transistor operations. Sci. Rep. 4, 04108 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Zavaleyev, V., Walkowicz, J., Kuznetsova, T. & Zubar, T. The dependence of the structure and mechanical properties of thin ta-C coatings deposited using electromagnetic Venetian blind plasma filter on their thickness. Thin Solid Films 638, 153–158 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Tishkevich, D. I. et al. Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix. J. Alloys Comp. 804, 139–146 (2019).

    CAS 

    Google Scholar
     

  • 17.

    Zdorovets, M. V. & Kozlovskiy, A. L. Study of the effect of La3+ doping on the properties of ceramics based on BaTiOx. Vacuum 168, 108838 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Kozlovskiy, A., Kenzhina, I. & Zdorovets, M. Synthesis, phase composition and magnetic properties of double perovskites of A(FeM)O4–x type (A=Ce; M=Ti). Ceram. Int. 45, 8669–8676 (2019).

    CAS 

    Google Scholar
     

  • 19.

    Zdorovets, M. V., Kenzhina, I. E., Kudryashov, V. & Kozlovskiy, A. L. Helium swelling in WO3 microcomposites. Ceram. Int. 46, 10521–10529 (2020).

    CAS 

    Google Scholar
     

  • 20.

    Guo, L., Oskam, G., Radisic, A., Hoffmann, P. M. & Searson, P. C. Island growth in electrodeposition. J. Phys. D Appl. Phys. 44, 443001 (2011).

    ADS 

    Google Scholar
     

  • 21.

    Zubar, T. I., Trukhanov, A. V. & Vinnik, D. A. Influence of surface energy on Ni–Fe thin films formation process. Mater. Sci. Forum 946, 228–234 (2019).


    Google Scholar
     

  • 22.

    Zubar, T. I. et al. Control of growth mechanism of electrodeposited nanocrystalline NiFe films. J. Electrochem. Soc. 166, 173–180 (2019).


    Google Scholar
     

  • 23.

    Fritzsche, J. & Peuker, U. A. Wetting and adhesive forces on rough surfaces. An experimental and theoretical study. Procedia Eng. 102, 45–53 (2015).

    CAS 

    Google Scholar
     

  • 24.

    Rudawska, A. & Jacniacka, E. Analysis for determining surface free energy uncertainty by the Owen–Wendt method. Int. J. Adhes. Adhes. 29, 451–457 (2009).

    CAS 

    Google Scholar
     

  • 25.

    Hummer, G. & Szabo, A. Free energy surfaces from single-molecule force spectroscopy. Acc. Chem. Res. 38, 504–513 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Neuman, A. N. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods. 5, 491–505 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Johnson, K. L. Contact Mechanics (Cambridge University Press, Cambridge, 1985).


    Google Scholar
     

  • 28.

    Johnson, K. L., Kendall, K. & Roberts, A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Willis, J. R. Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids 14, 163–176 (1966).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 31.

    Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Leo-Macias, A. et al. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat. Commun. 7, 10342 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Weisenhorn, A. L., Maivald, P., Butt, H.-J. & Hansma, P. K. Measuring adhesion, attraction, and repulsion between surface in liquids with an AFM. Phys. Rev. B 45, 11226–11232 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Roa, J. J. et al. Study of the friction, adhesion and mechanical properties of single crystals, ceramics and ceramic coatings by AFM. J. Eur. Ceram. Soc. 31(4), 429–449 (2011).

    CAS 

    Google Scholar
     

  • 35.

    Urbakh, M. & Meyer, E. The renaissance of friction. Nat. Mater. 9, 8–10 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Gao, G., Cannara, R. J., Carpick, R. W. & Harrison, J. A. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23(10), 5394–5405 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Conache, G. et al. friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5(2), 203–207 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Gourdon, D. et al. The dependence of friction anisotropies on themolecular organisation of LB films as observed by AFM. Tribol. Lett. 3, 317–324 (1997).

    CAS 

    Google Scholar
     

  • 39.

    Lin, L.-Y., Kim, D.-E., Kim, W.-K. & Jun, S.-C. Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy. Surf. Coat. Technol. 205(20), 4864–4869 (2011).

    CAS 

    Google Scholar
     

  • 40.

    Sundararajan, S. & Bhushan, B. Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope. J. Vac. Sci. Technol. A 19, 1777 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Bogdanovica, G., Meurk, A. & Rutland, M. W. Tip friction—torsional spring constant determination. Colloid Surf. B 19(4), 397–405 (2000).


    Google Scholar
     

  • 42.

    Bistac, S. & Galliano, A. Nano and macro tribology of elastomers. Tribol. Lett. 18, 21–25 (2005).

    CAS 

    Google Scholar
     

  • 43.

    Broitman, E. The nature of the frictional force at the macro-, micro-, and nano-scales. Friction 2(1), 40–46 (2014).


    Google Scholar
     

  • 44.

    Bostan, L. et al. Macro- and nano-tribological characterisation of a new HEMA hydrogel for articular cartilage replacement. Comput. Methods Biomech. 13, 33–35 (2010).


    Google Scholar
     

  • 45.

    Torre, C. L. & Bhushan, B. Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus. Ultramicroscopy 10(8–9), 720–734 (2006).


    Google Scholar
     

  • 46.

    Gulbinski, W., Pailharey, D., Suszko, T. & Mathey, Y. Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films. Surf. Sci. 475(1–3), 149–158 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Shimizudag, J., Edadag, H., Yoritsuneddag, M. & Ohmura, E. Molecular dynamics simulation of friction on the atomic scale. Nanotechnology 9, 118 (1998).

    ADS 

    Google Scholar
     

  • 48.

    Burgo, T. et al. Friction coefficient dependence on electrostatic tribocharging. Sci. Rep. 3, 2384 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kim, S. H., Marmo, C. & Somorjai, G. A. Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface. Biomaterials 22(24), 3285–3294 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Schwarz, U. D., Allers, W., Gensterblum, G. & Wiesendanger, R. Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B 52, 14976 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Gulbiński, W., Suszko, T. & Pailharey, D. High load AFM friction and wear experiments on V2O5 thin films. Wear 254(10), 988–993 (2003).


    Google Scholar
     

  • 52.

    Wang, J., Rose, K. C. & Lieber, C. M. Load-independent friction: MoO3 nanocrystal lubricants. J. Phys. Chem. B 103(40), 8405–8409 (1999).

    CAS 

    Google Scholar
     

  • 53.

    Bluhm, H., Inoue, T. & Salmeron, M. Friction of ice measured using lateral force microscopy. Phys. Rev. B 61, 7760 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Li, Q., Dong, Y., Perez, D., Martini, A. & Carpick, R. W. Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 55.

    Gong, P., Ye, Z., Yuan, L. & Egberts, P. Evaluation of wetting transparency and surface energy of pristine and aged graphene through nanoscale friction. Carbon 132, 749–759 (2018).

    CAS 

    Google Scholar
     

  • 56.

    Kuznetsova, T. A. et al. Tribology properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode. IOP Conf. Ser. Mater. Sci. Eng. 256, 012022 (2017).


    Google Scholar
     

  • 57.

    Bogdanovic, G., Meurk, A. & Rutland, M. W. Tip friction—torsional spring constant determination. Colloids Surf. B 19, 397–405 (2000).

    CAS 

    Google Scholar
     

  • 58.

    Kuznetsova, T. et al. Surface Microstructure of Mo(C)N Coatings Investigated by AFM. J. Mater. Eng. Perform. 25, 5450–5459 (2016).

    CAS 

    Google Scholar
     

  • 59.

    Adams, G. G. & Nosonovsky, M. Contact modeling—forces. Tribol. Int. 33, 431–442 (2000).


    Google Scholar
     

  • 60.

    Zubar, T. I. & Chizhik, S. A. Studying nanotribological properties of functional materials via atomic force microscopy. J. Frict. Wear 40, 201–206 (2019).


    Google Scholar
     

  • 61.

    Gong, J., Riemer, S., Kautzky, M. & Tabakovich, I. Composition gradient, structure, stress, roughness and magnetic properties of 5–500 nm thin NiFe films obtained by electrodeposition. J. Magn. Magn. Mater. 398, 64–69 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Zubar, T. I. et al. Anomalies in Ni–Fe nanogranular films growth. J. Alloys Compd. 748, 970–978 (2018).

    CAS 

    Google Scholar
     

  • 64.

    Venables, J. Introduction to Surface and Thin Film Processes (Cambridge University Press, Cambridge, 2000).


    Google Scholar
     

  • 65.

    Zubar, T. I. et al. Anomalies in growth of electrodeposited Ni–Fe nanogranular films. CrystEngComm 20, 2306–2315 (2018).

    CAS 

    Google Scholar
     

  • 66.

    Warcholinski, B. et al. Mechanical properties of Mo(C)N coatings deposited using cathodic arc evaporation. Surf. Coat. Technol. 319, 117–128 (2017).

    CAS 

    Google Scholar
     

  • 67.

    Warcholinski, B. et al. Structural and mechanical properties of Zr–Si–N coatings deposited by arc evaporation at different substrate bias voltages. J. Mater. Eng. Perform. 27, 3940–3950 (2018).

    CAS 

    Google Scholar
     

  • 68.

    Salem, M. M. et al. Structural, electric and magnetic properties of (BaFe11.9Al0.1O19)1–x–(BaTiO3)x composites. Compos. Part B Eng. 174, 107054 (2019).

    CAS 

    Google Scholar
     

  • 69.

    Zubar, T. et al. The effect of heat treatment on the microstructure and mechanical properties of 2D nanostructured Au/NiFe system. Nanomaterials 10, 1077 (2020). https://doi.org/10.3390/nano10061077.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 70.

    Warcholinski, B. et al. Mechanical properties of Cr-O-N coatings deposited by cathodic arc evaporation. Vacuum 156, 97–107 (2018). https://doi.org/10.1016/j.vacuum.2018.07.017.

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source Article