Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii

Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii

  • 1.

    Legras, J. L., Merdinoglu, D., Cornuet, J. M. & Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16, 2091–2102 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. U.S.A. 101, 17593–17598. https://doi.org/10.1073/pnas.0407921102 (2004).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Cavalieri, D., McGovern, P., Hartl, D., Mortimer, R. & Polsinelli, M. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57, S226–S232 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    McGovern, P., Hartung, U., Badler, V., Glusker, D. & Exner, L. The beginnings of winemaking and viniculture in the ancient Near East and Egypt. Expedition 39, 3–21 (1997).


    Google Scholar
     

  • 5.

    Dudley, R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr. Comp. Biol. 44, 315–323 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover?. Addiction 97, 381–388. https://doi.org/10.1046/j.1360-0443.2002.00002.x (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Carrigan, M. A. et al. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc. Natl. Acad. Sci. U.S.A. 112, 458–463. https://doi.org/10.1073/pnas.1404167111 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Alba-Lois, L. & Segal-Kischinevzky, C. Yeast fermentation and the making of beer and wine https://www.nature.com/scitable/topicpage/yeast-fermentation-and-the-making-of-beer-14372813 (2010).

  • 9.

    Malacarne, M., Martuzzi, F., Summer, A. & Mariani, P. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 12, 869–877. https://doi.org/10.1016/S0958-6946(02)00120-6 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Brady, M. First Taste. How Indigenous Australians Learned About Grog (Alcohol Education and Rehabilitation Foundation Ltd, Canberra, 2008).


    Google Scholar
     

  • 11.

    Brady, M. & McGrath, V. Making Tuba in the Torres Strait islands: the cultural diffusion and geographic mobility of an alcoholic drink. J. Pac. Hist. 45, 315–330. https://doi.org/10.1080/00223344.2010.530811 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100, 9861–9874. https://doi.org/10.1007/s00253-016-7941-6 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Jolly, N. P., Varela, C. & Pretorius, I. S. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237. https://doi.org/10.1111/1567-1364.12111 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Steinkraus, K. H. Handbook of Indigenous Fermented Foods, Second Edition, Revised and Expanded (Marcel Dekker, New York, 1995).


    Google Scholar
     

  • 15.

    Tamang, J. P., Watanabe, K. & Holzapfel, W. H. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00377 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Bahiru, B., Mehari, T. & Ashenafi, M. Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: variations within and between production units. Food Microbiol. 23, 277–282. https://doi.org/10.1016/j.fm.2005.05.007 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Vallejo, J. A. et al. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Syst. Appl. Microbiol. 36, 560–564. https://doi.org/10.1016/j.syapm.2013.09.002 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Puerari, C., Magalhães-Guedes, K. T. & Schwan, R. F. Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 46, 210–217. https://doi.org/10.1016/j.fm.2014.08.009 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Escalante, A. et al. Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 235, 273–279. https://doi.org/10.1016/j.femsle.2004.04.045 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Lappe-Oliveras, P. et al. Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res. 8, 1037–1052. https://doi.org/10.1111/j.1567-1364.2008.00430.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Jung, M. J., Nam, Y. D., Roh, S. W. & Bae, J. W. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112–123. https://doi.org/10.1016/j.fm.2011.09.008 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Greppi, A. et al. Determination of yeast diversity in ogi, mawe, gowe and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 165, 84–88. https://doi.org/10.1016/j.ijfoodmicro.2013.05.005 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE https://doi.org/10.1371/journal.pone.0095384 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Tapsoba, F., Legras, J. L., Savadogo, A., Dequin, S. & Traore, A. S. Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. Int. J. Food Microbiol. 211, 128–133. https://doi.org/10.1016/j.ijfoodmicro.2015.07.010 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Bokulich, N. A., Bamforth, C. W. & Mills, D. A. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS ONE 7, e35507. https://doi.org/10.1371/journal.pone.0035507 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. U.S.A. 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Siren, K. et al. Taxonomic and functional characterization of the microbial community during spontaneous in vitro fermentation of Riesling must. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00697 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Morgan, H. H., du Toit, M. & Setati, M. E. The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00820 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Williams, K. J. & Potts, B. M. The natural distribution of Eucalyptus species in Tasmania. Tasforests 8, 39–165 (1996).


    Google Scholar
     

  • 30.

    Calder, J. A. & Kirkpatrick, J. B. Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Aust. J. Bot. 56, 684–692. https://doi.org/10.1071/BT08105 (2008).

    Article 

    Google Scholar
     

  • 31.

    Sanger, J. C., Davidson, N. J., O’Grady, A. P. & Close, D. C. Are the patterns of regeneration in the endangered Eucalyptus gunnii ssp. divaricata shifting in response to climate?. Austral. Ecol. 36, 612–620. https://doi.org/10.1111/j.1442-9993.2010.02194.x (2011).

    Article 

    Google Scholar
     

  • 32.

    Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 1.9.1 https://microbiome.github.com/microbiome (2017).

  • 33.

    Morrison-Whittle, P. & Goddard, M. R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 9, 2003–2011. https://doi.org/10.1038/ismej.2015.18 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Morrison-Whittle, P. & Goddard, M. R. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ. Microbiol. 20, 75–84. https://doi.org/10.1111/1462-2920.13960 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Brooker, M. I. H. A Key to Eucalypts in Britain and Ireland. (Forestry Commission Booklet 50: The Stationery Office, 1983).

  • 36.

    Forrest, M. & Moore, T. Eucalyptus gunnii: a possible source of bioenergy?. Biomass Bioenerg. 32, 978–980. https://doi.org/10.1016/j.biombioe.2008.01.010 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Guimarães, R. et al. Aromatic plants as a source of important phytochemicals: vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crop Prod. 30, 427–430. https://doi.org/10.1016/j.indcrop.2009.08.002 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Bugarin, D. et al. Essential oil of Eucalyptus gunnii hook. As a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 19, 19007–19020. https://doi.org/10.3390/molecules191119007 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Leborgne, N. et al. Introduction of specific carbohydrates into Eucalyptus gunnii cells increases their freezing tolerance. Eur. J. Biochem. 229, 710–717. https://doi.org/10.1111/j.1432-1033.1995.0710j.x (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Stuckel, J. G. & Low, N. H. The chemical composition of 80 pure maple syrup samples produced in North America. Food Res. Int. 29, 373–379. https://doi.org/10.1016/0963-9969(96)00000-2 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. & Goddard, M. R. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Pinto, C. et al. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00905 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Is microbial terroir related to geographic distance between vineyards?. Environ. Microbiol. Rep. 9, 742–749. https://doi.org/10.1111/1758-2229.12589 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Knight, S. J., Karon, O. & Goddard, M. R. Small scale fungal community differentiation in a vineyard system. Food Microbiol. https://doi.org/10.1016/j.fm.2019.103358 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688. https://doi.org/10.1126/science.1256688 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Lin, Y. T., Whitman, W. B., Coleman, D. C. & Chiu, C. Y. Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01968 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Grangeteau, C. et al. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol. 10, 354–370. https://doi.org/10.1111/1751-7915.12428 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247. https://doi.org/10.1016/j.soilbio.2015.09.002 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Portillo, M. D. C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63. https://doi.org/10.1016/j.ijfoodmicro.2015.12.002 (2016).

    Article 

    Google Scholar
     

  • 50.

    Castaneda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098. https://doi.org/10.7717/peerj.3098 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Setati, M. E., Jacobson, D. & Bauer, F. F. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must Mycobiome in three South African vineyards employing distinct agronomic systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01358 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Miura, T. et al. Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biol. Fertil. Soils 52, 307–322. https://doi.org/10.1007/s00374-015-1077-1 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Shared and unique features of bacterial communities in native forest and vineyard phyllosphere. Ecol. Evol. 9, 3295–3305. https://doi.org/10.1002/ece3.4949 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hendgen, M. et al. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. https://doi.org/10.1038/s41598-018-27743-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Montecchia, M. S. et al. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture. PLoS ONE 10, 18. https://doi.org/10.1371/journal.pone.0119426 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Gleeson, D., Mathes, F., Farrell, M. & Leopold, M. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Sci. Total Environ. 571, 1407–1418. https://doi.org/10.1016/j.scitotenv.2016.05.185 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Kemler, M. et al. Ion Torrent PGM as tool for fungal community analysis: a case study of Endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE https://doi.org/10.1371/journal.pone.0081718 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Piškur, J., Rozpędowska, E., Polakova, S., Merico, A. & Compagno, C. How did Saccharomyces evolve to become a good brewer?. Trends Genet. 22, 183–186. https://doi.org/10.1016/j.tig.2006.02.002 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J. Q. & Crosby, L. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. Msystems https://doi.org/10.1128/mSystems.00055-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130. https://doi.org/10.1038/s41396-019-0484-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Thrash, J. C. Culturing the uncultured: Risk versus reward. Msystems https://doi.org/10.1128/mSystems.00130-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Varela, C., Pizarro, F. & Agosin, E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl. Environ. Microbiol. 70, 3392–3400. https://doi.org/10.1128/Aem.70.6.3392-3400.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Parker, M. et al. Factors contributing to interindividual variation in retronasal odor perception from aroma glycosides: The tole of odorant sensory detection threshold, oral microbiota, and hydrolysis in saliva. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.9b05450 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 79, 2519–2526. https://doi.org/10.1128/AEM.03870-12 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Sternes, P. R., Lee, D., Kutyna, D. R. & Borneman, A. R. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. bioRxiv https://doi.org/10.1101/098061 (2017).

    Article 

    Google Scholar
     

  • 66.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article 

    Google Scholar
     

  • 68.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Mahe, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593. https://doi.org/10.7717/peerj.593 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5.4 https://CRAN.R-project.org/package=vegan (2019).

  • 73.

    Li, C., Yu, G. & Zhu, C. microbiomeViz—an R package for visualizing microbiome data https://github.com/lch14forever/microbiomeViz (2018).

  • 74.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Article 

    Google Scholar
     

  • 75.

    Kassambara, A. ggpubr: ‘ggplot2’ based publication eady plots. R package version 0.2 https://CRAN.R-project.org/package=ggpubr (2018).

  • 76.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (SpringerVerlag, New York, 2009).


    Google Scholar
     

  • 77.

    Team, R. C. R: a language and environment for statistical computing https://www.R-project.org/ (2017).

  • Source Article