Braiding photonic topological zero modes

Braiding photonic topological zero modes

  • 1.

    Leinaas, J. & Myrheim, J. On the theory of identical particles. Nuovo Ciment. B 37, 1–23 (1977).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Wilczek, F. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 4.

    Fröhlich, J. Statistics of fields, the Yang-Baxter equation, and the theory of knots and links. In Nonperturbative Quantum Field Theory (eds ‘t Hooft, G., et al.), NATO ASI Ser. B 185, 71–100 (Springer, 1988).

  • 5.

    Witten, E. Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 6.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 7.

    Freedman, M., Kitaev, A., Larsen, M. & Wang, Z. Topological quantum computation. Bull. Am. Math. Soc. 40, 31–38 (2002).

    MathSciNet 
    Article 

    Google Scholar
     

  • 8.

    Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 9.

    Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Todorić, M., Jukić, D., Radić, D., Soljačić, M. & Buljan, H. Quantum Hall effect with composites of magnetic flux tubes and charged particles. Phys. Rev. Lett. 120, 267201 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Lunić, F. et al. Exact solutions of a model for synthetic anyons in a noninteracting system. Phys. Rev. B 101, 115139 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Camino, F. E., Zhou, W. & Goldman, V. J. Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics. Phys. Rev. B 72, 075342 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    An, S., et al., Braiding of Abelian and non-Abelian anyons in the fractional quantum Hall effect. Preprint at http://arXiv.org/abs/1112.3400 (2011).

  • 15.

    Willett, R. L., Nayak, C., Shtengel, K., Pfeiffer, L. N. & West, K. W. Magnetic-field-tuned Aharonov–Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2. Phys. Rev. Lett. 111, 186401 (2013).

  • 16.

    Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article 

    Google Scholar
     

  • 17.

    Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).


    Google Scholar
     

  • 18.

    Karzig, T. et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics at the ν = 1/3 fractional quantum Hall state. Preprint at https://arxiv.org/abs/2006.14115 (2020).

  • 21.

    Pancharatnam, S. Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    MathSciNet 
    Article 

    Google Scholar
     

  • 22.

    Berry, M. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 23.

    Berry, M. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 24.

    Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Wang, Z., Chong, Y., Joannopoulos, J. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 907–912 (2013).

    Article 

    Google Scholar
     

  • 29.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 30.

    Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 31.

    Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B–At. Mol. Opt. 43, 163001 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Iadecola, T., Schuster, T. & Chamon, C. Non-Abelian braiding of light. Phys. Rev. Lett. 117, 073901 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Chiu, C. -K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Hou, C. -Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Semenoff, G. W. Chiral symmetry breaking in graphene. Phys. Scr. T146, 014016 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Izutsu, M., Nakai, Y. & Sueta, T. Operation mechanism of the single-mode optical-waveguide Y junction. Opt. Lett. 7, 136–138 (1982).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Hardin, R. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev. 15, 423 (1973).


    Google Scholar
     

  • 43.

    Guglielmon, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Photonic realization of a transition to a strongly driven Floquet topological phase. Phys. Rev. A 97, 031801 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Source Article